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Application of the FIDAP code to the
8:1 thermal cavity problem
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SUMMARY

We present results using FIDAP on 3 meshes with 3 di�erent elements (Q1Q0;Q2P−1;Q2Q−1) employed
on each. Whereas the bulk of the results were obtained via the ‘classical’ Galerkin �nite element
method (GFEM) and the trapezoidal (TR) time integrator, we also tested several alternative options:
�ux-conservative formulation, energy-conservative formulation, streamline upwinding, mass lumping,
backward Euler time stepping, and one additional element (Q2Q1). The most accurate of these options
was the Q2Q−1 element in the advective formulation, no upwinding, trapezoidal time integration, and
consistent mass; i.e. straight GFEM. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While performing three-dimensional, time-dependent, laminar thermal convection analyses for
the National Ignition Facility (NIF) program at the Lawrence Livermore National Laboratory
(LLNL) with the commercial code FIDAP [1], we were contacted by Prof. Bathe to organize
a ‘special session’ for his planned 1st MIT Conference on Computational Fluid and Solid
Mechanics, June 2001. After contacting Dr Mark Christon at Sandia National Laboratories
to ‘coerce’ him into volunteering to lead the e�ort, we complied by ‘lifting’ a typical two-
dimensional cross-section from one of our three-dimensional NIF simulations and choosing
similar values of Rayleigh and Prandtl numbers, thus explaining the origin of Ra=3:4× 105
and Pr=0:71 (actual values used in most of our simulations were 3:407× 105 and 0.7088,
respectively, and we mistakenly rounded them in formulating the MIT conference problem,
which will be commented on more fully later). See Reference [2] for the problem description.
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1084 P. M. GRESHO AND S. B. SUTTON

This contribution thus comes via the rather versatile and general commercial �nite element
code, FIDAP [1]. This code still o�ers the user a wide selection with respect to element
choices, statement of governing equations, (e.g. advective form, divergence form) implicit
time integrators (variable or �xed step, �rst order or second order), and solution techniques
for both the non-linear and linear sets of equations. We have tested quite a number of these
variations on this problem which are summarized herein.

2. METHODOLOGY

Most of the results were obtained using the classical ‘plane vanilla’ (and least expensive)
Galerkin �nite element method—no tricks, such as stability-enhancing upwind-related modi�-
cations to the advection terms—combined with an ‘honest’ non-dissipative second-order accu-
rate time integrator: trapezoid rule [3]. However, to demonstrate the often-deleterious e�ects of
‘stabilizing’ modi�cations, we present some SUPG (streamline-upwind Petrov–Galerkin) re-
sults and one from a highly dissipative and only �rst-order accurate time integrator: backward
Euler (BE). See References [1; 3] for algorithmic details.
In the results to be summarized herein, two types of solvers were employed on the linear

systems resulting after the successive substitution (Picard) method was applied to each non-
linear algebraic system: (1) After applying the penalty approximation method [3] to eliminate
the pressure (P= −�∇·u) the fully-coupled (u; �) systems were solved using an e�cient form
of Gaussian elimination (skyline method [1]) for Meshes 1 and 2, and for all elements except
Q2Q1—which must be solved ‘more’ fully coupled (u; P; �) as the penalty method is then
not so e�cient. (2) For Mesh 3, the segregated solution method was employed to generate
an iterative sequence of smaller (uncoupled) linear systems (for u; v; � and P, as well as
one for a Lagrange multiplier), each of which is solved by an iterative method. The sym-
metric systems (P and the Lagrange multiplier) were solved using the SSOR-preconditioned
conjugate residual (CR) method and the unsymmetrical ones (u; v; �) via conjugate gradient
squared (CGS), preconditioned with diagonal (Jacobi) scaling combined with both explicit and
implicit relaxation (see References [1; 3]). Convergence criteria employed were as follows:
�N =10−7 for the outer (Picard) iterations and �L =10−4 for the linear subsystems. The outer
iterations typically converged in 3–5 iterations and the linear subsystems required 2–6 via
CGS and 20–80 via CR. Su�cient testing convinced us that the �nal convergence criterion
selected was su�ciently small via both relative error and relative residual (Euclidean) norms;
i.e. ‖�x‖=‖x‖¡� and ‖R(x)‖=‖R(x0)‖¡�, where R(x)≡Ax − b.

3. RESULTS

We present detailed results from 3 elements on 3 grids, all from the advective formulation,
TR time integration, and conventional GFEM. The elements used (see Reference [3]) were:
(1) Q1Q0 (bilinear velocity and temperature, piecewise-constant pressure on quadrilaterals),
(2) Q2P−1 (biquadratic velocity and temperature, piecewise-linear pressure) and (3) Q2Q−1,
(same as Q2P−1 except pressure is piecewise-bilinear). Even though the �rst and third have
some (div-) stability problems [3], they produced excellent results and are still quite useful
in general. The Q2P−1 (9=3) element, while possibly the most popular (stable) higher-order

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1083–1092



FIDAP CODE FOR THE THERMAL CAVITY PROBLEM 1085

Table I. Point 1, wall, and mean data.

Mesh 1 Mesh 2 Mesh 3
Grid resolution: 27× 121 Grid resolution: 53× 241 Grid resolution: 105× 481
Steps=period: ∼ 25 Steps=period: ∼ 25 Steps=period: ∼ 25

Avg. Amp. Period Avg. Amp. Period Avg. Amp. Period

u1 Q1Q0 0.05605 0.05852 3.4583 0.05861 0.05644 3.4341 0.05693 0.05564 3.4279
Q2P−1 0.05246 0.00542 3.4245 0.05703 0.0553 3.4265 0.05665 0.05548 3.4259
Q2Q−1 0.05601 0.05194 3.4285 0.05688 0.05564 3.4261 0.05649 0.05541 3.4259

v1 Q1Q0 0.46189 0.08246 3.4582 0.4651 0.07938 3.4342 0.46263 0.0782 3.4279
Q2P−1 0.46409 0.0084 3.4428 0.4631 0.07754 3.4265 0.46251 0.078 3.4259
Q2Q−1 0.46233 0.07316 3.4285 0.4627 0.07824 3.4261 0.46180 0.0778 3.4259

�1 Q1Q0 0.26385 0.04582 3.4582 0.2664 0.04394 3.4341 0.26515 0.04333 3.4279
Q2P−1 0.26590 0.00442 3.4429 0.2658 0.04288 3.4265 0.26547 0.04312 3.4259
Q2Q−1 0.26590 0.0405 3.4286 0.2651 0.04324 3.4261 0.26572 0.04314 3.4259

�12 Q1Q0 0 — — 0 — — 0 — —
Q2P−1 0 — — 0 — — 0 — —
Q2Q−1 0 — — 0 — — 0 — —

 1 Q1Q0 −0:07293 0.00738 3.4582 −0:07397 0.0072 3.4341 −0:07450 0.00712 3.4276
Q2P−1 −0:07337 7E-4 3.4414 −0:07398 0.00706 3.4264 −0:07444 0.00708 3.4259
Q2Q−1 −0:07218 0.00622 3.4286 −0:07409 0.0071 3.4261 −0:07439 0.0071 3.4259

!1 Q1Q0 −2:2379 1.1528 3.4581 −2:3428 1.0798 3.4341 −2:4144 1.0776 3.4279
Q2P−1 −2:4106 0.1072 3.4414 −2:4240 1.0862 3.4266 −2:4498 1.0816 3.4259
Q2Q−1 −2:2513 1.0264 3.4285 −2:4190 1.093 3.4257 −2:4455 1.081 3.4259

�P14 Q1Q0 −0:00152 0.02086 3.4582 −0:00193 0.0209 3.4340 −0:00234 0.02057 3.4280
Q2P−1 −0:00182 0.00226 3.4412 −0:00125 0.0208 3.4264 −0:00219 0.02068 3.4262
Q2Q−1 −0:00135 0.01974 3.4285 −0:00200 0.02096 3.4259 −0:00203 0.02068 3.4259

�P51 Q1Q0 −0:5337 0.02238 3.4582 −0:5332 0.023 3.4343 −0:5323 0.02292 3.4280
Q2P−1 −0:5342 0.00262 3.4414 −0:5348 0.02298 3.4266 −0:5348 0.02292 3.4262
Q2Q−1 −0:5360 0.02172 3.4286 −0:5338 0.02314 3.4260 −0:5349 0.02292 3.4260

�P35 Q1Q0 0.5362 0.0101 3.4581 0.5354 0.01026 3.4341 0.5357 0.0102 3.4283
Q2P−1 0.5360 0.0012 3.4422 0.5360 0.01026 3.4266 0.5370 0.01022 3.4261
Q2Q−1 0.5373 0.00982 3.4286 0.5358 0.01034 3.4261 0.5370 0.0102 3.4257

−Nux=0 Q1Q0 4.5661 0.00776 3.4582 4.5796 0.0074 3.4343 4.5821 0.00726 3.4279
Q2P−1 4.6318 8.6E-4 3.4410 4.5893 0.00724 3.4265 4.5825 0.00722 3.4259
Q2Q−1 4.6328 0.0074 3.4286 4.5893 0.0073 3.4260 4.5821 0.00722 3.4258

−Nux=W Q1Q0 4.5661 0.00776 3.4582 4.5796 0.0074 3.4343 4.5821 0.00726 3.4263
Q2P−1 4.6318 8.78E-4 3.4421 4.5888 0.00724 3.4265 4.5825 0.00722 3.4259
Q2Q−1 4.6328 0.0074 3.4286 4.5893 0.0073 3.4261 4.5821 0.00722 3.4258

u Q1Q0 0.2396 4.42E-5 3.4582 0.2396 3.56E-5 3.4335 0.2397 3.46E-5 3.4271
Q2P−1 0.2393 5.98E-6 3.4336 0.2397 3.38E-5 3.4265 0.2397 3.42E-5 3.4254
Q2Q−1 0.2396 3.64E-5 3.4286 0.2397 3.38E-5 3.4250 0.2397 3.4E-5 3.4271

! Q1Q0 2.8728 0.0031 3.4582 2.9769 0.0032 3.4342 3.0075 0.00322 3.4280
Q2P−1 3.0188 3.8E-4 3.4419 3.0180 0.00322 3.4275 3.0179 0.00322 3.4258
Q2Q−1 3.0171 0.00306 3.4285 3.0180 0.00324 3.4260 3.0179 0.00322 3.4259
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Table II. Problem timing information.

Mesh 1 Mesh 2 Mesh 3

Q1Q0 Machine: C360 Machine: C360 Machine: J5000
Solver: Gaussian elimination Solver: Gaussian elimination Solver: Segregated=iterative
Timing: 1230 �s=node=step Timing: 2375 �s=node=step Timing: 3085 �s=node=step
Memory: 13:75 Mbytes Memory: 102:1 Mbytes Memory: 26:78 Mbytes

Q2P−1 Machine: J5000 Machine: J5000 Machine: J5000
Solver: Gaussian elimination Solver: Gaussian elimination Solver: Segregated=iterative
Timing: 786 �s=node=step Timing: 2370 �s=node=step Timing: 3747 �s=node=step
Memory: 16:99 Mbytes Memory: 118:9 Mbytes Memory: 33:53 Mbytes

Q2P−1 Machine: J5000 Machine: J5000 Machine: J5000
Solver: Gaussian elimination Solver: Gaussian elimination Solver: Segregated=iterative
Timing: 1000 �s=node=step Timing: 2469 �s=node=step Timing: 6102 �s=node=step
Memory: 16:99 Mbytes Memory: 118:9 Mbytes Memory: 33:73 Mbytes

Computer resources are given below:

• Machines: Hewlett-Packard J5000, Hewlett-Packard C360.
• Clock rate: 440 MHz (J5000), 340 MHz (C360).
• Total memory: 2 GBytes (J5000), 1 GByte (C360).
• SPECfp95 rate: 52.3 (J5000), 28.1 (C360).
• Number of processors: On J5000, all problems run in single processor mode.

element (at least when using quadrilaterals), was often slightly less accurate than Q2Q−1.
This may be more important in 3D simulations, where neither of these higher-order elements
has been adequately tested=evaluated. Some [3] suspect that Q2Q−1, even though somewhat
unstable, may be the winner in this race—at least if and when the so-called ‘pesky modes’
are properly dealt with, so as not to slow down the iterative solvers (see Reference [3])—as
occurred herein with FIDAP.
The results presented in Tables I and II are self-explanatory, with the possible need to

explain one ‘outlier’: The Q2P−1 element performed poorly (low amplitudes) on Mesh 1, but
recovered strongly on Mesh 2. Also, the seemingly large extra cost for Q2Q−1 over Q2P−1
on Mesh 3 is probably related to the slight instability (pesky modes) for the former, com-
bined with the use of iterative solvers; Q2Q−1required about twice as many iterations for
each pressure solve. The calculations addressed in Table I results employed approximately 25
timesteps per oscillation period. When the number of timesteps was doubled, the oscillation
amplitude changed by less than 1%. Finally, we restate that parameter values used herein are
very slightly di�erent than those requested (for ‘historical’ reasons); viz., Ra=3:407× 105
(∼ 0:2% high) and Pr=0:7088 (∼ 0:2% low). We have since determined that this inconsis-
tency has less than a 0.1% e�ect on the amplitude.
Figure 1 gives the time history of the temperature at Point 1 for Q2Q−1 on Mesh 2.

Figure 1(a) focuses on the developing time regime, showing the frequency beating during
the early stages that gives way to a single frequency. Figure 1(b) shows the single fre-
quency behaviour at later times in the solution. Figure 2 shows the skew-symmetric pattern
of temperature variations with respect to the local time average. The dark regions have an
instantaneous temperature less than the local mean while in the grey regions it is greater. The
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Figure 1. The temperature at Point 1. (a) The early stages of �ow development showing the frequency
beating. (b) The latter stages of the solution, after stabilization, showing single frequency behaviour.

arrows track a single disturbance ‘bubble’ over one oscillation period as it propagates up the
hot wall.
Having complied with the ‘compulsory results’ stated in Reference [2], we now move on

to some further comparisons, semi-quantitatively, that we believe should be of interest to both
FIDAP users and others—in which we brie�y address some seemingly ever-present questions
like:

(1) Should I use the advective form (e.g. u · ∇�) or the �ux-conservative divergence form
(e.g. ∇ · (u�)) or even the quadratically conserving (energy) form (e.g. 1=2 [u · ∇� +
∇ · (u�])?

(2) When using Q2 (9-node) for velocity, should I use a continuous or discontinuous
pressure approximation? If the latter, should it be linear or bilinear?

(3) Should I use any 9-node elements or should I stay with the simpler 4-node element?
(In 3D, an important ‘extrapolation’ not considered herein—this question applies to the
8-node (trilinear) brick vs. the various 27-node (triquadratic) bricks).

(4) Should I ever use �rst-order, implicit Euler (BE) for time integration of time-dependent
simulations?

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1083–1092
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Figure 2. Patterns of the instantaneous temperature variation from the local time averaged mean; time
interval between plots is (approximately) 1=6 of one period. In dark regions the temperature is less than

the local mean, in grey regions it is greater.

We supply next a small amount of information that might help to answer some of these
questions—but will only state our opinion when we are fairly con�dent. Figures 3–9 sum-
marize our solution errors relative to the ‘truth’ solution provided in Reference [4]. In these
�gures the labels ‘coarse’, ‘medium’, and ‘�ne’, which are adjacent to the data points, refer
to Meshes 1, 2, and 3, respectively (see Table I). Where two labels are seemingly identifying
the same point, this merely indicates that the points are nearly coincident and the positioning
of the label is used to denote the relative error.
Figure 3 shows, for the Q1Q0 element at least, that the simple advective form is more

accurate than either ‘conservative’ form. In the sequel, we discard the energy conservative
form on the assumption that the results would carry over, i.e. it will lie between the other
two in accuracy.
Two 9-node elements are similarly compared in Figures 4 and 5—with similar results:

advective form generally wins. Also suggested is that Q2Q−1 is somewhat more accurate than
Q2P−1—especially on a coarse mesh.
In Figures 6 and 7 we compare all three 9-node elements in advective form, from which

we see: (1) Q2Q1 (continuous P) is very bad on a coarse mesh (it gives a steady-state
solution), but recovers strongly on better meshes; (2) Q2Q−1 is more accurate than the
other two, with Q2P−1 not far behind (except on the coarse mesh); (3) the global (x; y)
pressure approximation is slightly better than the local (�; �) for Q2P−1 (see for exam-
ple Reference [3, p. 554, 894] for further arguments in favour of global pressure
approximation).
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Figure 3. 4-node element (Q1Q0) results with di�erent advection formulations.
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Figure 4. Some 9-node element results with di�erent advection formulations.

Finally, Figures 8 and 9 compare the 4-node element against the three 9-node elements.
In general we see improved accuracy with mesh re�nement, with the exception of Q2P−1
which, surprisingly, exhibits a larger error on the �ne mesh (see also Figure 7). Interestingly,
the ‘cheaper’ Q1Q0 provides comparable accuracy to the more expensive quadratic elements
on the �ne mesh (note that machine di�erences must be accounted for in comparing some
Table II values).
One key result in Figure 8 is this: streamline upwinding (SUPG) via Q1Q0 on both coarse

and medium meshes failed—went to steady-state. This is hardly surprising when it is real-
ized that the �uid dynamic instability in this problem is in the boundary layer in the �ow
direction—just where streamline upwinding adds the extra damping.
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Figure 5. Zoom-in of Figure 4.

-100

-80

-60

-40

-20

0

20

Medium
 Fine 

Q
2
Q

1
Q

2
P−1

Q
2
Q

−1

Coarse

Medium

Coarse; local P

Coarse; global P

Fine

Coarse

Medium

R
el

at
iv

e 
E

rr
or

 (
%

)

Figure 6. 9-node element results for 3 di�erent pressures (advective form).

Two other runs that failed (went to steady-state) are these: (1) Q1Q0 on the coarse mesh
when the mass was lumped—caused by poor phase and group velocity accuracy (see Reference
[3]), (2) Backward Euler (BE) time integration with both 25 and 50 steps per cycle. At least
100 steps per cycle would be required for this inaccurate and highly dissipative integrator to
succeed.

4. SUMMARY AND CONCLUSIONS

Having applied many variations in CFD-methodology via the FIDAP code, we believe that
the following conclusions are valid:
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Figure 7. Zoom-in of Figure 6.
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Figure 8. 4-node element vs 9-node elements (advective form).

(1) The ‘plane-vanilla’ GFEM with ‘advective form’ and trapezoidal rule for time inte-
gration is the best way to solve the time-dependent Boussinesq (and Navier–Stokes)
equations.

(2) If the pesky-mode instability could be e�ciently dealt with, then the Q2Q−1 element
should be employed over the Q2P−1—especially in 3D (we believe).

(3) The slightly unstable (pesky modes again) Q1Q0 element remains surprisingly compet-
itive with the higher-order elements—another result that will (may) be more important
in 3D.

(4) Neither the �rst-order backward Euler time integrator nor mass lumping should be
employed if accurate results are desired in truly time-dependent �ows.
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Figure 9. Zoom-in of Figure 8.
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Note added in proof (PMG): It is interesting to recall that the Q2Q−1 element performed
EXTREMELY WELL in an earlier thermal convection ‘test problem’ (see Reference [5]). Using only
745 nodes in a unit cavity, our results (see Reference [6] for details) were within 1% of the benchmark.
That (steady-state) code was written at LLNL.
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